Tag Archive for Repair

Teardown, Repair & Analysis of a Noise-XT 2MHz – 7GHz Ultra-Low Phase-Noise Synthesizer

In this episode Shahriar repairs a Noise-XT 2MHz – 7GHz Ultra-Low Phase-Noise Clock Synthesizer. The instrument’s history indicates that it has suffered a fall from a work table. After a lot of difficulty, the instrument control software was found so that the unit can be tested.

Initial tests reveal that a very small output is present, however nearly 40dB below the desired value. The unit teardown shows an architecture based on dual Analog Devices DDS 14-bits DACs in conjunction with a Z-COMM VCO and a series of dividers & frequency multipliers. A detailed analysis of the unit is presented.

RF and analog measurements indicate that the RF connector is not making adequate contact with the final trace of the RF output. This explains the low output power. This problem is resolved by replacing the SMA connector entirely. The device output power, frequency accuracy, stability as well as cross-correlation phase-noise measurements are presented.


Teardown & Repair of an Agilent E8257D 250kHz – 31.8GHz PSG Analog Signal Generator

In this episode Shahriar repairs an Agilent E8257D PSG Analog Signal Generator generously loaned by AllTest. Please visit their website for all your measurement, calibration and service needs:


The instrument does provide an RF output signal. However, there is also a large DC offset voltage present at the output RF port which changes depending the frequency band. The DC voltage is present even when the output RF signal is disabled. Furthermore, the OCXO of the instrument is defective and does not produce a 10MHz output signal.

The block diagram of the PSG is examined in details with emphasis on the final attenuator, coupler and doubler RF decks. Interestingly enough the output offset is traced all the way back to the Modulator Filter block. The teardown of the module reveals a series of PIN diode switches and after some investigation the fault is traced to a damaged PIN diode on the sub-3.2GHz path. Since the diode can’t be easily replaced, the control voltage to the diode is disabled instead which removed the DC offset problem.

The OCXO teardown reveals that during a prior repair, the oscillator module has been damages and torn off the PCB. New pins are added to the oscillator module which returns the crystal back to working condition. The performance of the PSG is verified using a spectrum analyzer and frequency counter.

Teardown & Repair of an Agilent N9020A MXA 10Hz – 26.5GHz Spectrum Analyzer (March 2020)

In this episode Shahriar takes a look at a malfunctioning Agilent N9020A MXA. This instrument was provided by AllTest who hold the largest inventory of used and refurbished instruments. They have trusted The Signal Path to attempt a repair on the instrument and to support the educational content of this channel. Thank you AllTest! Please visit their website for all your measurement, calibration and service needs:


The instrument fails RF Alignment despite the fact that all calibration signals are present and can be viewed on the unit. The front-end attenuators also appear to be fully functioning. A full sweep of the input shows that the instrument fails to make measurements between 8.4GH – 14GHz as well as above 17GHz. The block diagram is analyzed and the likely fault is traced to a doubler circuit on the A13 RF Assembly. The teardown of the assembly along with step-by-step reverse engineering is presented. An X-Ray of the module also reveals the hidden band-pass filter structure on the PCB. Various dies are also examined under the microscope. The A13 module is replaced with which corrects all the instrument faults and returns the unit to normal operation.

Teardown, Repair & Experiments with a Voltech PM3000A 3-Phase Universal Power Analyzer

In this episode Shahriar investigates the failure of a Voltech PM3000A 3-Phase Universal Power Analyzer. This instrument is capable of advanced measurements on power profile and performance of a DUT. The unit shows “Voltage & Current OVERLOAD” condition on all channels even without a DUT connected.

The teardown of the unit reveals the isolation techniques used between the analog sampling heads and the main digital/DSP board. The instrument uses a combination of transformers and optocouplers to provide power to the sampling heads and receive digitized data from the voltage/current ADCs.

Close examination of the unit shows a faulty capacitor on the AC power supply feeding the sampling heads. The capacitor is replaced which corrects the overload condition. The unit is then used to measure the power profile of a simple glue-gun. The PF and THD measurements show that the glue-gun is equipped with a triac for power control; an expected result for a simple glue-gun.

Teardown & Repair of an Agilent N5182A MXG 100kHz – 3GHz Vector Signal Generator

In this episode Shahriar repairs a malfunctioning Agilent N5182A MXG Vector Signal Generator. While the instrument operates perfectly above 250MHz, below 250MHz the output is very low with a significant increase in the noise floor.

The block diagram of the synthesizer is presented showing various RF signal paths. It is shown that the sub-250MHz band is derived from a hetrodyne section which is where the problem located. Using a EM probe, various signal flows are discovered on the main board and compared with the block diagram. The main problem is traced to a doubler circuit which generates a 1-GHz LO signal for the hetrodyne section. The doubler comprises a transformer coupled to a dual diode surface mount IC. The IC is replaces which restores the doubler functionality and repairs the instrument.

  • Social Media

  • Administrator

  • Archives

This site is protected by Comment SPAM Wiper.