Tag Archive for Repair

Teardown, Repair & Analysis of an Agilent E4443A 3Hz – 6.7GHz PSA Series Spectrum Analyzer

In this episode Shahriar repairs an Agilent PSA Series Spectrum Analyzer. The instrument generates many errors during self-alignment and produces no measurements below 3.2GHz. The block diagram of the unit is thoroughly presented and various possible failure points are considered. Based on the observation of the noise floor, the most likely cause is the second LO module. The measurement of the LO power indicates that the second LO power is fall below nominal.

The second LO signal (at 3.6GHz) is generated by a DRO PLL module which is locked to 600MHz. The PLL is functional, however the output power is below -20dBm. Teardown of the module reveals a simple design with a doubler and filter. The filter (which is discolored) shows a huge loss likely caused by RF losses due to trace degradation. Thinning the traces provides some improvement and the remaining loss is compensated with a two stage RF amplifier. With this modifications, the instrument’s alignment errors are partially resolved.

The next problem is with the input attenuator at the 20dB range. This problem is simply resolved by providing lubrication on the attenuator solenoids after disassembly. The instrument is then used for various measurements to verify its correct operation.

Teardown & Experiments with an Anritsu MS9710B 0.6-1.75um Optical Spectrum Analyzer

In this episode Shahriar repairs¬†an Anritsu MS9710B Optical Spectrum Analyzer. The instrument intermittently does not boot and when it does it generates a Grating Mirror error. Some investigation reveals that the problems may simply be poor internal cabling connections which can be resolved by cleaning all connectors and re-building the unit. The LCD screen’s CCFL have also failed. An LED back-light replacement provides the screen with a vibrant and bright colors.

The unit is very compact (which is unusual for an Optical Spectrum Analyzer) and makes it ideal for bench-top working environments. The broad-spectrum built-in reference laser can be used to calibrate and align the instrument which proves to work perfectly. After calibration, a laser diode from an Agilent Lightwave Transmitter is measured. Interestingly it can be seen that the unit produces two tones at ~1nm apart which indicates the laser operates in two modes. A very interesting result given that the wavelength meter only reports one tone at the average wavelength of the two modes.

Teardown & Repair of an Agilent N1912A P-Series Power Meter

In this episode Shahriar investigates a peculiar problem with an Agilent P-Series Power Meter. While the instruments works during startup, after about 10 minutes the LCD screen begins to flicker and become scrambled. Initial investigation reveals that the issue is not likely with the main motherboard since USB connection to the instrument and data-readout is possible even when the LCD screen is malfunctioning.

Teardown of the unit reveals a modular design where a ribbon cable connects the front panel to the motherboard. Moving the cable around affect the LCD which points to a faulty cable connection. The failure is at the only ribbon cable without a proper removable connector to the motherboard. The cable is cut, re-crimped and the solder joints re-worked. This appears to solve the LCD problem. The performance of the unit is verified by measuring the output power of the Tektronix TSG Vector Signal Generator.

Teardown, Repair & Upgrade of an Agilent E4405B 13.5GHz ESA-E Spectrum Analyzer

In this episode Shahriar explores the cause of failure of an Agilent E4405B ESA 13.5GHz spectrum analyzer. In a previous episode, an E4407B version of the ESA was repaired and upgraded which is helpful in debugging and analyzing this instrument. The instrument displays LO Unlock which is a familiar problem. After an overview of the system block diagram, the LO signal path is traced and analyzed for problems.

After some investigation, the problem appears to be identical to the E4407B model repaired before! The Hittite (Analog Devices) divide-by-4 static divider unit has failed and does not divide correctly at high frequencies. The component is replaced which restores the instrument’s functionality.

The LCD screen of the unit is also very dim. The CCFL tube and the inverter are replaced with an LED back light instead. The unit then produces a bright and vibrant graphs and text. The performance of the instrument is verified with a Keysight MXG signal generator.

Teardown & Repair of an Agilent E3632A DC Power Supply

In this episode Shahriar & Rosanah investigate an Agilent power supply which does not appear to power on. It can be quickly observed that the fuse has failed on the unit. Using an isolation transformer a small amount of AC voltage is applied to the unit after the fuse replacement. It is clear that a short is present somewhere in the instrument since even at 10V AC the instrument consumes more than 1A.

After separating the internal transformer from the main PCB, the high current consumption is eliminated. The short is traced to a damaged main rectifier in the instrument. A replacement rectifier is used which allows the instrument to power on.

The VFD display is however extremely dim. After a failed attempt at restoring the VFD brightness, a new display is purchased from eBay. The replacement produces a bright vibrant VFD display. The performance of the power supply is verified under load.

  • Social Media

  • Administrator

  • Archives