Tag Archive for Project

Tutorial and Experiments with ESP8266 SoC, Blynk App, Arduino and Internet of Things (IoT)

In this episode Shahriar explores the functionality of the popular ESP8266 SoC chip. This IC incorporates a full ISM radio as well as the physical/MAC layer for 802.11b/g/n network communication. Furthermore it includes a uC core for code execution making it a low-cost candidate for Internet of Thing applications. This video uses a Sparkfun Thing evaluation board which also includes a LiPo batter charger, voltage regular, flash memory and all the I/O pins which are accessible to the user. The block diagram of the ESP8266 is reviewed as well as the schematic of the complete Sparkfun Thing board.

By using an Arduino library and the Blynk iOS application, a cell phone and the ESP8266 can simultaneously communicate with a server running the Blynk application and transfer data between the application and the module. In this demo various components such as NeoPixel (WS2812), OneWire temperature sensor and battery monitoring functionality are implemented. The code is available here.

Tutorial on the Design & Implementation of an FPGA RGB LED Matrix Driver

In this episode Shahriar and Timo demonstrate the design methodology of an FPGA based 32×32 RGB LED matrix driver. Timo has kindly devoted some of his time to describe the block diagram and the thought process which goes into designing this type of FPGA display driver. The various components of the overall system (PLL, UART, and Display Controller) are shown along with the simulation data. The outputs of the Spartan-6 FPGA board are then measured using a Keysight S-Series oscilloscope. The design of the RGB matrix is also demonstrated using a custom clock interface sent wirelessly to the unit via Bluetooth. All the FPGA design files can be downloaded here.

Agilent 53131A Universal Counter Upgrade OPT-030 Analysis and Experiments

In this episode, Shahriar upgrades an Agilent 53131A Universal Counter with the OPT-030 which extends its frequency range from 225MHz to 3GHz. The upgrade kit is a replica PCB intended to emulate the behavior of the original Agilent branded option.

The PCB is examined carefully with attention to microwave layout techniques along the signal path. The datasheet of all the parts are reviewed and the reverse-engineered block diagram of the PCB is presented. The expected behavior of the PCB is then measured in both small-signal and large-signal operation using an active 3GHz probe. The PCB is then installed inside the unit and the functionality of the instrument is verified within its specifications. All the documents presented in the video can be found here.

  • Social Media

    twittergooglepluswordpressyoutuberedditrssemail
  • Administrator

  • Archives