Archive for Projects

Teardown, Upgrade and Experiments with a Verity Visible Wavelength Monochromator

In this episode, Shahriar upgrades a Verity visible wavelength monochromator model EP200Mmd to be able to perform automatic scans. The instrument is retrofitted with a stepper motor and a microcontroller which performs wavelength scanning between 225nm to 875nm. The signal from the internal photomultiplier is sampled by the microcontroller and wirelessly sent to the computer. Matlab is used to plot the wavelength response.

The principle operation of a monochromator is thoroughly reviewed starting with the grating mirror behavior. The operation of the photomultiplier is also described. Various mechanical and electronic of the upgraded system is also shown. The presented slides can be found here.

Tutorial on Programming the NeoPixel (WS2812) RGB LEDs and Equipment Giveaway!

In this episode Shahriar takes a close look at programming the popular NeoPixel RGB LEDs using a PIC microcontroller and C-language. A close-up of the NeoPixel (WS2812) LED is shown with attention to identifying various semiconductor elements inside the package. The principle operation of the LED is the described along with a detailed explanation of the pins and the one-wire communication protocol.

A simple evaluation board for the PIC18F4550 is used to drive a circular array of 60 NeoPixel LEDs from Adafruit. After presenting the difficulties of providing an accurate pulse-shape using the C-language, the measured waveform is shown on a Tektronix MDO4000B. Finally, the code for a circular color rotating pattern is presented and demoed. The code for the experiment can be downloaded here.

There is also equipment giveaway! A TPI Scope Plus 440 and a Tektronix TDS2232 are being given away at no charge! Please leave a comment on the video or on the website. You must be a resident of the USA to receive the giveaway. A winner will be chosen at a later date and notified via email.

Agilent 53131A Universal Counter Upgrade OPT-030 Analysis and Experiments

In this episode, Shahriar upgrades an Agilent 53131A Universal Counter with the OPT-030 which extends its frequency range from 225MHz to 3GHz. The upgrade kit is a replica PCB intended to emulate the behavior of the original Agilent branded option.

The PCB is examined carefully with attention to microwave layout techniques along the signal path. The datasheet of all the parts are reviewed and the reverse-engineered block diagram of the PCB is presented. The expected behavior of the PCB is then measured in both small-signal and large-signal operation using an active 3GHz probe. The PCB is then installed inside the unit and the functionality of the instrument is verified within its specifications. All the documents presented in the video can be found here.

Tutorial and Experiments on Energy Harvesting ICs

In this episode Shahriar investigates some state-of-the-art energy harvesting ICs from Linear Technology. The LTC3105 is a highly efficient 400mA Step-Up DC/DC Converter with Maximum Power Point Control and 250mV Start-Up. After exploring the IC’s internal block diagram, the evaluation board for this energy harvesting chip is presented. Various experiments, including the calculation of efficiency, maximum power delivery, start-up behavior and MPPC are presented. As a last experiment, a two stage energy harvesting setup using a solar panel and a super-capacitor capable of charging an iPhone is demonstrated.

The second IC of interest is the LTC3109 which is an Auto-Polarity, Ultralow Voltage Step-Up Converter and Power Manager Energy Harvesting chip. The block diagram and the evaluation board of this IC is presented. The ultra-low voltage capability of the circuit is demonstrated through the use of a Peltier cooler thermo-electric component to generate a 5V output voltage. As a final experiment, several ice cubes are used in conjunction with the thermo-electric generator in order to harvest enough energy to charge an iPhone for 30 seconds.

  • Social Media

  • Administrator

  • Archives