Archive for General

Tutorial on the Design & Implementation of an FPGA RGB LED Matrix Driver

In this episode Shahriar and Timo demonstrate the design methodology of an FPGA based 32×32 RGB LED matrix driver. Timo has kindly devoted some of his time to describe the block diagram and the thought process which goes into designing this type of FPGA display driver. The various components of the overall system (PLL, UART, and Display Controller) are shown along with the simulation data. The outputs of the Spartan-6 FPGA board are then measured using a Keysight S-Series oscilloscope. The design of the RGB matrix is also demonstrated using a custom clock interface sent wirelessly to the unit via Bluetooth. All the FPGA design files can be downloaded here.

Free Energy & Over-unity Charging Circuit – The Scientific Method

In this episode Shahriar builds a magical charger circuit that has an efficiency of tens-of-thousands of percent! But not to worry, it is a trick and the trick is revealed in the video. The purpose of the video is to discuss the nature of the scientific method and our society’s need for free education.

My Interview at The Amp Hour!

I had a great time as a guest of The Amp Hour. We talked about everything from device physics to circuit design into the mm-wave frequencies and beyond. Although this interview took place a short while ago, I thought it would be beneficial to also have a link here at The Signal Path. Also, don’t forget to listen to the many great episodes of The Amp Hour. The link to my interview can be found here.

Tutorial on Microwave and mm-Wave Components and Modules

In this episode Shahriar demos various microwave and mm-wave connectors, components and modules. The purpose of this video is to help new engineers become familiarized with microwave components and help reduce the chance of component damage and failure.

This video demonstrates microwave connectors (BNC, SMA, 3.5mm, 2.92mm (K), 2.4mm, 1.85mm (V), 1.0mm), interfacing instructions, attenuators, power splitters (both resistive and reactive), phase shifters, mm-wave cables, AC coupling caps, Bias-Ts and their principle of operation, mixers, tuning stubs, couplers, switched attenuators, microwave filters, multipliers, amplifiers, coaxial to waveguide converters, waveguide components including horn antennas, and directional couplers. The video also demonstrates Cascade GSG probes and GGB custom composite RF probes. The documents for this video can be downloaded from here.

 

Tutorial and Experiments on Energy Harvesting ICs

In this episode Shahriar investigates some state-of-the-art energy harvesting ICs from Linear Technology. The LTC3105 is a highly efficient 400mA Step-Up DC/DC Converter with Maximum Power Point Control and 250mV Start-Up. After exploring the IC’s internal block diagram, the evaluation board for this energy harvesting chip is presented. Various experiments, including the calculation of efficiency, maximum power delivery, start-up behavior and MPPC are presented. As a last experiment, a two stage energy harvesting setup using a solar panel and a super-capacitor capable of charging an iPhone is demonstrated.

The second IC of interest is the LTC3109 which is an Auto-Polarity, Ultralow Voltage Step-Up Converter and Power Manager Energy Harvesting chip. The block diagram and the evaluation board of this IC is presented. The ultra-low voltage capability of the circuit is demonstrated through the use of a Peltier cooler thermo-electric component to generate a 5V output voltage. As a final experiment, several ice cubes are used in conjunction with the thermo-electric generator in order to harvest enough energy to charge an iPhone for 30 seconds.

  • Social Media

    twittergooglepluswordpressyoutuberedditrssemail
  • Administrator

  • Archives